Math 115 Fall 2017 Lecture 29

Simplify:

$$
\begin{aligned}
& \frac{\frac{1}{x}+2}{\frac{1}{x}-2}=\frac{x \cdot \frac{1}{x}+x \cdot 2}{x \cdot \frac{1}{x}-x \cdot 2}=\frac{1+2 x}{1-2 x} \\
& \frac{L C D=x}{\frac{x+6+\frac{5}{x}}{x-\frac{25}{x}}=\frac{x \cdot x+x \cdot 6+x \cdot \frac{5}{x}}{x \cdot x-x \cdot \frac{25}{x}}=\frac{x^{2}+6 x+5}{x^{2}-25}} \\
& \quad \begin{aligned}
(C D=x & =\frac{(x+1)(x+5)}{(x-5)(x+5)}=\frac{x+1}{x-5}
\end{aligned}
\end{aligned}
$$

Cross-Multiply $\dot{\varepsilon}$. Solve

$$
\begin{array}{ll}
\frac{x-3}{4}>\frac{4}{x+3} & \underbrace{x-3)(x+3)}_{\text {conjugates }}=4 \cdot 4 \\
& x^{2}+3 x-3 x-9=16
\end{array}
$$

Using Z.F.P.

$$
x^{2}-9=16
$$

$$
\begin{array}{ll}
x+5=0 & x-5=0 \\
x=-5 & x=5 \\
\{ \pm 5\} & x^{2}-9-16=0 \\
& (x+5)(x-5)=0
\end{array}
$$

use LCD to clear fraction, then Solve

$$
\begin{aligned}
& \frac{x}{x+3}+4=\frac{x}{x+3} \\
& \begin{array}{l}
\text { LCD }=x+3, E \cdot V_{0}:-3 \\
x+4(x+3)=x \\
0 \\
x+4 x+12=x \\
5 x-x=-12
\end{array} \quad \begin{array}{l}
4 x=-12 \\
x=-3
\end{array}
\end{aligned}
$$

One number plus Five times its reciprocal is equal to 6. Find all such numbers.

$$
\begin{aligned}
& \rightarrow x+5 \cdot \frac{1}{x}=6 \quad \begin{array}{c}
\text { Solve } \\
x+\frac{5}{x}=6
\end{array} \\
& L C D=x \\
& x^{2}+5=6 x \\
& x^{2}-6 x+5=0 \\
& (x-5)(x-1)=0
\end{aligned} \rightarrow x-5=0 \text { or } x-1=0
$$

Eric can do a job in 3 hrs alone, while Mark can do the Same job in 5 hrs alone. How long if they work together?

$$
\begin{aligned}
& \frac{1}{3} \cdot t+\frac{1}{5} \cdot t=1 \Rightarrow \frac{t}{3}+\frac{t}{5}=1 \\
& L C D=15 \Rightarrow 5 t+3 t=15 \\
& 8 t=15 \\
& \\
& \underbrace{1.875} \text { hrs } \\
& t=\frac{15}{8} \quad t=1.875
\end{aligned}
$$

SpongeBob and Patrick can do a job together in 4 hrs.
working alone, Sponge Bob can do it in This.
How long does it Patrick to do the job if he works alone? Rate $\frac{1}{7} \cdot 4+\frac{1}{x} \cdot 4=1$
Sponge Bob $\rightarrow 7$ hiss $\rightarrow \frac{1}{7}$
Patrick $\rightarrow x$ his $\rightarrow \frac{1}{x} \left\lvert\, \frac{4}{7}+\frac{4}{x}=1\right.$

$$
\begin{align*}
x x \cdot \frac{4}{x}+7 x \cdot \frac{4}{x}=7 x \cdot 1 \\
4 x+28=7 x
\end{aligned} \rightarrow 28=3 x \quad \begin{aligned}
& L C D=7 x \\
& 4 x-7 x=-28 \\
& -3 x=-28 \\
& x=\frac{-28}{3}
\end{align*} \rightarrow \text { Ch.2 }
$$

Lisa $\underset{\varepsilon}{\prime}$ Laura can do a job in 5 days.
Lisa can do it in 8 days, working alone.
How long does it take Laura to do the job alone? Lisa $\rightarrow 8$ Days $\rightarrow \frac{1}{8}$

$$
\text { Laura } \rightarrow x \text { DaYs } \rightarrow \frac{1}{x}
$$

$$
\begin{aligned}
& \frac{1}{8} \cdot 5+\frac{1}{x} \cdot 5=1 \\
& 5 x+5 \cdot 8=8 x \\
& 40=8 x-5 x \\
& \frac{5}{8}+\frac{5}{x}=1 \\
& 13 \text { days } \\
& 40=3 x \\
& L C D=8 x \\
& 8 x \cdot \frac{5}{8}+8 x \cdot \frac{5}{x}=8 x \cdot 1 \\
& \begin{aligned}
5 x+40 & =8 x \\
5 x-8 x & =-40
\end{aligned} \\
& \begin{aligned}
5 x+40 & =8 x \\
5 x-8 x & =-40
\end{aligned} \\
& x=\frac{40}{3} \quad x \approx 13 \\
& \rightarrow-3 x=-40
\end{aligned}
$$

Pipe A can fillup a pool in 8 hrs.
Pipe B can empty the pool in 12 hrs.
Assume pool is empty, and both pipes working,
How long does it take to fillip the pool?

$$
\begin{array}{lr}
\frac{1}{8} \cdot t-\frac{1}{12} \cdot t=1 & \text { Solve } \frac{t}{8}-\frac{t}{12}=1 \\
8=2 \cdot 2 \cdot 2 & 24 \cdot \frac{t}{8}-24 \cdot \frac{t}{12}=24 \cdot 1 \\
\begin{array}{ll}
12=2 \cdot 2 \cdot 3 & 3 t-2 t=24 \\
L C D & =2 \cdot 2 \cdot 2 \cdot 3=24 \\
& 24 \text { hrs }
\end{array} t=24
\end{array}
$$

The sum of reciprocals of two cons. odd integers is $\frac{8}{15}$. Find all such integers Two cons. odd integers $\rightarrow x \dot{\varepsilon}_{1} x+2$

$$
\begin{aligned}
& \text { Two cons. } \\
& \begin{array}{l}
\text { Reciprocals } \rightarrow \frac{1}{x} \cdot \frac{1}{x+2}+\frac{7}{x+2}=\frac{8}{15} \\
L C D=15 x(x+2) \\
15 x(x+2) \cdot \frac{1}{x}+15 x(x+2) \cdot \frac{1}{x+2}=15 x(x+2) \cdot \frac{8}{15} \\
15(x+2)+15 x=8 x(x+2) \\
15 x+30 x^{2}+16 x \\
30 x+30
\end{array} \\
& \begin{array}{ll}
15 x=8 x^{2}+16 x & -30 x-30=0 \\
3 x^{2}-14 x-30=0 \\
4 x^{2}-7 x-15=0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 4 x^{2}-7 x-15=0 \\
& a=4 \quad b=-7 \quad c=-15 \\
& b^{2}-4 a c=(-7)^{2}-4(4)(-15)=289 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-7) \pm \sqrt{289}}{2(4)} \\
& x=\frac{7 \pm 17}{8} \quad x=\frac{7+17}{8}=\frac{24}{8}=3 \\
& x=\frac{7-17}{8}=\frac{-10}{8}=\frac{5}{4}
\end{aligned}
$$

Final Exam
. Review old exams

- Review class quizzes
- Review SG \& notes
- Come early if You want

You may come in person to my office after 3:00 PM to know your final grade.

